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ABSTRACT 

Foodborne pathogens especially bacteria cause a vast number of diseases 
which leads to a high mortality rate in humans. Conventional antibiotics 
have been employed in an attempt to eradicate these pathogens and this 
has led to the evolution of a multidrug resistant bacteria strain. Thus, a 
new genre of antibiotics is prepared by using nanoparticles as they show 
effective antibacterial capabilities. Biosynthesized nanoparticles are less 
toxic to humans as compared to chemically synthesized nanoparticles 
which are prepared using toxic precursors. They also exhibit enhanced 
antibacterial action along with the biomolecules that help in their 
formation. Among most metal oxides, magnesium oxide (MgO) 
nanoparticles show unique antibacterial properties due to their exclusive 
oxide vacancies and crystalline structure. The antibacterial activity of 
MgO nanoparticles synthesized using leaf extract is further enhanced by 
the presence of phytochemicals. The present work is a comparative study 
of the antibacterial activity of MgO nanoparticles synthesized using three 
different leaf extracts: (1) Amaranthus tricolor, (2) Amaranthus blitum and 
(3) Andrographis paniculata and their reaction towards Escherichia coli 
which is a gram negative, food borne pathogen. The results showed that 
the ~78 nm spherical shaped MgO nanoparticles synthesized from A. 
blitum, exhibited the highest antibacterial activity at 60 µL dosage. In 
addition, the effects of the characteristics of the MgO nanoparticles such 
as size, morphology, concentration, surface charge and phytochemicals on 
antibacterial mechanism were also discussed. 

KEYWORDS: antibacterial activity; Escherichia coli; MgO nanoparticles; 
phytochemicals; reactive oxygen species 

INTRODUCTION 

In 2016, the World Health Organization (WHO) reported that 420,000 
people died due to food borne diseases caused by several microbes and 
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125,000 among them were children below age of 5 years [1]. It is well 
known from previous reports that bacteria is the most important  
micro-organism which can spread lethal food-borne diseases [2,3]. 
Conventionally, antibiotics are extensively used to eradicate these disease-
causing bactericides [4], which has led to the emergence of multidrug 
resistant bacterial strains in the long term [5,6]. Therefore, it is urgent to 
develop an enhanced antibacterial agent to deal with these multidrug 
resistant bacterial strains mediating the spread of food borne diseases. 
Recently, inorganic antibacterial agents have been studied extensively, 
due to their controlled reactive oxygen species (ROS) which suppresses the 
micro-organisms growth to effectively control pathogenic microorganisms 
[7–9]. It was reported that inorganic antibacterial agents showed 
improved safety and stability under high temperature treatments than 
organic antibiotics [10,11]. Inorganic nanoparticles, especially metal 
oxides are gaining attention in various industrial applications due to their 
ability to withstand harsh conditions [12,13], excellent antimicrobial 
activity [14,15] and they are highly useful in many biomedical applications 
such as tissue engineering, diagnostics and therapeutics [16,17]. Inorganic 
metal oxide nanoparticles such as ZnO [18], TiO2 [19], CuO [20] and MgO 
[21] have been widely studied as antibacterial agents. Among these 
particles, MgO nanoparticle is a unique metal oxide because it shows less 
toxicity towards hosts and compared to other metal oxide nanoparticles, 
it possesses various beneficial properties for biomedical applications 
including antibacterial activity [22,23].  

Synthesis procedures play a significant role in attaining metal oxide 
nanoparticles with anticipated properties for a specific application [24,25]. 
There are various ways to synthesize metal oxide nanoparticles depending 
on the properties required for a particular application. Physical synthesis 
methods such as chemical vapor deposition [26], physical vapor deposition 
[27], laser ablation [28] and radio frequency magnetron sputtering [23,29] 
are commonly used in the metal oxide nanoparticle synthesis. Likewise, 
metal oxide nanoparticles are also prepared by chemical methods such as 
hydrothermal [30], wet-chemical [31], sol-gel [32], polyol [33] and 
microwave/ultrasound mediated chemical synthesis [34,35]. Both types of 
these synthesis methods have promising advantages, however, these 
synthesis methods involve expensive equipment and employ usage of 
hazardous chemicals which limits their application in the biomedical 
industry [36,37]. Thus, biosynthesis methods are preferred to synthesize 
nanoparticles for biomedical applications [38]. Three major biological 
organisms are involved in the biosynthetic nanoparticle preparation, 
namely bacteria [39], fungi [40] and plants [41]. Even though synthesis of 
nanoparticles via bacteria and fungi is potential for large scale 
nanoparticle synthesis with minimum usage of toxic chemicals [42–44], 
the extended production time is a stumbling block to its usage [45,46]. 
Hence, plant leaf extracts serves as an excellent medium to synthesize 
nanoparticle with controllable morphology and ability to enhance the 
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downstream process of nanoparticle production [37]. There are only few 
reports available that supports the enhanced antibacterial activity of plant 
leaf extract mediated biosynthesized MgO nanoparticles [47–49]. Thus, the 
aim of the present work is to compare the antibacterial activity of MgO 
nanoparticles synthesized by three different leaf extracts towards gram-
negative E. coli bacteria. The effects of nanoparticle characteristics such as 
size, morphology, concentration, surface charge and phytochemicals in 
influencing the antibacterial activity of MgO nanoparticles are also 
discussed. 

EXPERIMENTAL PROCEDURE 

Synthesis and Characterization of MgO Nanoparticles 

The MgO nanoparticles were synthesized by using plant extracts 
namely Amaranthus tricolor, Amaranthus blitum and Andrographis 
paniculata. The aqueous plant extracts were prepared by adding fresh 
leaves of each plant, individually, with distilled water in the ration 1:10. 
The extracts were prepared by heating the mixture at 100 °C for 20 min 
and constantly mixing at 350 rpm via magnetic stirrer (Cole-Parmer, 
Mumbai, India). Finally, the extracts were obtained by filtration using 
Whatman No. 1 filter paper to remove impurities and the pure extracts 
were stored at 4 °C in refrigerator for further use. The synthesis 
parameters were optimized and the nanoparticles were characterized 
using Dynamic light scattering (DLS) technique (Malvern, Singapore),  
UV-visible spectrometer (Perkin Elmer, Selangor, Malaysia), Fourier 
transform infrared (FTIR) spectroscopy (Mettler Toledo, Singapore) and 
Transmission electron microscopy (TEM) (Hitachi, Kuala Lumpur, 
Malaysia) to confirm their physicochemical characters such as size, 
surface charge, functional groups and morphology as reported in our 
previous study [50,51]. The physicochemical characteristics of MgO 
nanoparticles prepared from three distinct leaf extracts are shown in 
Table 1. 

Table 1. Characteristics of leaf extract mediated biosynthesized MgO nanoparticles (Adapted and 
reproduced from [50] with permission from The Royal Society of Chemistry). 

Sample 
name * 

Precursor Leaf extract Size ± PDI Shape 
Surface 
charge 

Sample NT 
Magnesium 
nitrate 

A. tricolor 50 ± 0.37 
Spherical and 
hexagon 

−21.4 mV 

Sample NB A. blitum 78 ± 0.35 Spherical −15.4 mV 
Sample NP A. paniculata 32 ± 0.56 Spherical −11.4 mV 

* Sample NT—MgO nanoparticles prepared using magnesium nitrate and A. tricolor leaf extract, Sample NB—MgO 

nanoparticles prepared using magnesium nitrate and A. blitum leaf extract, Sample NP—MgO nanoparticles prepared 

using magnesium nitrate and A. paniculata leaf extract. 
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Bacterial Culture 

The microorganism Escherichia coli (MTCC739) was obtained from 
Sigma-Aldrich (Selangor, Malaysia). In the present study, this strain was 
used to evaluate the inhibition ability of nanoparticles, as it is highly stable 
towards heavy metals compared to other strains. Most of the previously 
reported studies utilized this strain to evaluate the antibacterial activity of 
natural extracts against food borne pathogens [52,53]. In addition, it is 
noteworthy that the inhibition of this E. coli strain by a naturally extracted 
material demonstrates the capacity of the extract to inhibit growth of most 
E. coli stains [54,55]. The purchased bacterial cells were stored in a 
refrigerator at −2 °C. 2.1% w/v of Mueller-Hinton broth purchased from 
Merck (Selangor, Malaysia) was dissolved in 50 mL of distilled water and 
was autoclaved at 121 °C for 15 min. The bacterial cells were thawed at 
25 °C and 1% v/v of bacteria was inoculated into the autoclaved broth 
under sterile condition. The broth with bacterial inoculum was incubated 
in a rotary shaking incubator for 30 hours at 30 °C with 200 rpm. 

Antibacterial Activity 

The fully-grown bacterial cells in the broth medium were harvested by 
centrifugation at 25 °C, 3500 rpm for 5 min. The supernatant was removed, 
and the cell pellet was washed for several times with distilled water. The 
bacteria was then transferred to Mueller-Hinton agar procured from 
Merck using spread plate technique [56]. The colloidal MgO nanoparticles 
were diluted with distilled water to analyze the effect of the concentration 
and dosage of the nanoparticles in inhibiting bacterial growth. Different 
dosages of MgO nanoparticles from three different leaf extracts were 
transferred to a sterile disc placed on the agar plate cultured with E. coli 
and the zone of inhibitions were measured after incubation at 30 °C for 
30 hours. 

Concentration and Dosage of Biosynthesized MgO Nanoparticles 

Since the MgO nanoparticles were synthesized by using different leaf 
extracts which possess distinct phytochemical compositions, the 
concentration of nanoparticles per unit volume varies from one to another. 
The concentration of MgO nanoparticles synthesized by leaf extracts were 
calculated using standard linear graph method (Origin 8 software). 
Spherical shaped chemically synthesized MgO nanoparticles [57] were 
used to obtain the MgO linear correlation graph. The linear equation  
Y = 0.3748x + 0.0511 was obtained as the line of best fit from the graph 
displayed in Figure 1. The concentration and quantity of MgO 
nanoparticles prepared using leaf mediated biosynthesis method can be 
attained by substituting the respective absorbance at 322 nm in the linear 
equation. The concentration and quantity of MgO nanoparticle prepared 
by each leaf extract are listed in Table 2. Dosages ranging from 20 to 100 μL 
of colloidal MgO nanoparticles were used in the study. 

Med One. 2019;4:e190011. https://doi.org/10.20900/mo.20190011 

https://doi.org/10.20900/mo.20190011


 
Med One 5 of 18 

 

Figure 1. Standard linear graph of pure MgO nanoparticles to determine the concentration of colloidal MgO 
nanoparticles. 

Table 2. Concentration of biosynthesized MgO nanoparticles via leaf extracts. 

Sample * Absorbance at 322 nm Concentration (mg/mL) 
Sample NT 0.26 ± 0.01 0.56 
Sample NB 0.39 ± 0.015 1.08 
Sample NP 0.33 ± 0.02 0.82 

* Sample NT—MgO nanoparticles prepared using magnesium nitrate and A. tricolor leaf extract, Sample NB—MgO 

nanoparticles prepared using magnesium nitrate and A. blitum leaf extract, Sample NP—MgO nanoparticles prepared 

using magnesium nitrate and A. paniculata leaf extract. The concentrations were determined via experiments and 

analysis conducted in triplicate (n = 3) and error from the triplicate experiment were included as ± standard deviation. 

RESULTS AND DISCUSSIONS 

Dosage of MgO Nanoparticles 

The concentration of MgO nanoparticle present in each dosage which 
was prepared by using the three distinct leaf extracts as tabulated in Table 3. 
The yield of the nanoparticles depends on the crude phytochemicals 
extracted from the plants and this study aims at evaluating the 
antibacterial efficiency of crude phytochemical coated MgO nanoparticles. 
The dosages used in the study are reported as μL to compare the 
antibacterial activity of MgO nanoparticles from three different plant 
extracts which yields different concentration of MgO nanoparticles as 
mentioned in literature [58,59]. Thus, it is essential to note the 
concentration of nanoparticles present in each dosage of the samples as 
denoted in Table 3.  
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Table 3. Concentration of MgO nanoparticles present in different dosages. 

Dosage (μL) 
Concentration of MgO nanoparticle (μg/mL) 

Sample NT * Sample NB * Sample NP * 
20 11.2 21.6 16.4 
40 22.4 43.2 32.8 
60 33.6 64.8 49.2 
80 44.8 86.4 65.6 

100 56 108 82 

* Sample NT—MgO nanoparticles prepared using magnesium nitrate and A. tricolor leaf extract, Sample NB—MgO 

nanoparticles prepared using magnesium nitrate and A. blitum leaf extract, Sample NP—MgO nanoparticles prepared 

using magnesium nitrate and A. paniculata leaf extract. 

Antibacterial Activity of MgO Nanoparticles 

Figure 2A–C shows the antibacterial activity of MgO nanoparticles 
prepared using three different leaf extracts at different dosages (20–100 μL) 
against a foodborne gram negative pathogen E. coli. It is evident as shown 
in Figure 2 that MgO nanoparticles possess antibacterial activity against 
E. coli based on the zone of inhibition. However, the zone of inhibition was 
found to be less compared to other literatures, the concentration of 
nanoparticles synthesized by using aqueous leaf extract were low 
[47,48,60–62]. Literature shows that chemically synthesized MgO 
nanoparticle at higher concentration (<100 μg/mL) exhibits strong 
antibacterial activity against food borne bacteria [60–62]. On the other 
hand, biosynthesized MgO nanoparticle activity against food borne 
bacteria were also reported in some literatures [47–49] to have a higher 
bacterial inhibiting concentration compared to the present work. The 
current result shows that the colloidal MgO nanoparticles exhibited a 
linear concentration related antibacterial activity rather than dosage 
related antibacterial effect. The zone of inhibition is lower than the 
previous reports as the concentration used in the present work was much 
lower than mentioned in the literatures and as colloidal MgO 
nanoparticles were used against the bacterial strains. It can be observed 
that there is no linear relation between dosage and antibacterial activity 
of MgO nanoparticles as depicted by the zone of inhibition measured in 
Figure 2. Sample NT and NB show concentration related increase in 
antibacterial activity of MgO nanoparticle up to 60 μL dose whereas 
sample NP shows dosage dependent increase of antibacterial activity up 
to 80 μL dosage. Subsequently, we observe a decrease in the zone of 
inhibition indicating a lower antibacterial activity at higher dosages. This 
may be due to bacteria resistance against a higher concentration of 
nanoparticles [63]. This may also be due to agglomeration when a higher 
concentration (dosage) of nanoparticles are added to the bacterial growth 
medium which then reduces the release of ROS that goes on to induce 
bacterial cell death and prevent their growth. Also noteworthy is that the 
zone of inhibition of sample NB at 60 μL dosage towards E. coli is similar 
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to the previous work in which 5 mg/mL of Aloe vera extract synthesized 
MgO nanoparticles were used [47]. However, 60 μL dosage contains 
64.8 μg/mL of MgO nanoparticles which is lower than the amount of 
nanoparticles used to inhibit bacteria in the previous work. Similarly, 
100 μg/mL of rod shaped MgO nanoparticles synthesized via A. paniculata 
leaf extract showed enhanced zone of inhibition towards E. coli (20 mm) 
[48]. However, the present work shows that there is a higher antibacterial 
activity against E. coli for MgO nanoparticles synthesized via A. paniculata 
leaf extract at 80 μL dosage (11.6 mm) which contains only ~65 μg/mL of 
MgO nanoparticle.  

 

Figure 2. Representative images of three experiments for each sample: Zone of E. coli inhibition observed 
after treating with (A) sample NT, (B) sample NB and (C) sample NP. Sample NT—MgO nanoparticles 
prepared using magnesium nitrate and A. tricolor leaf extract, Sample NB—MgO nanoparticles prepared 
using magnesium nitrate and A. blitum leaf extract, Sample NP—MgO nanoparticles prepared using 
magnesium nitrate and A. paniculata leaf extract. The colloidal MgO nanoparticles were diluted with 
distilled water to analyze their antibacterial effect. Different dosages of three MgO nanoparticle samples 
were transferred to a sterile disc placed on the agar plate cultured with E. coli and the zone of inhibitions 
were measured after incubation at 30 °C for 30 hours. Experiments were conducted in triplicate (n = 3). 

Comparative Antibacterial Activity of Three MgO Nanoparticles 

Figure 3 shows the antibacterial activity of MgO nanoparticles 
prepared in sample NT, NB and NP. It can be noted that both sample NB 
and NT showed better antibacterial activity at 60 μL dosage, compared to 
sample NP. However, sample NB shows higher zone of inhibition (12 mm) 
at 60 μL dosage compared to all the samples. Sample NP shows a distinct 
mechanism of antibacterial activity compared to other two samples and 
the highest zone of inhibition was found to be at 80 μL dosage. This 
difference in the antibacterial mechanism may be due to the quantity of 
phytochemicals present in the leaf extract [38] or the nanoparticle 
concentration from leaf extract mediated synthesis [64]. It has been 
explained in literature that phytochemicals serve as the reducing and 
stabilizing agent for nanoparticle synthesis [38]. Thus, these phytochemicals 
are responsible for nanoparticle concentration in the colloidal solution [64] 
which is significant in the current study. Depending on the concentration, 

Med One. 2019;4:e190011. https://doi.org/10.20900/mo.20190011 

https://doi.org/10.20900/mo.20190011


 
Med One 8 of 18 

shape and size in each dosage, MgO nanoparticles exhibited dosage 
dependent antibacterial activity against E. coli bacteria. Also, it can be 
observed that the quantity of phytochemicals present in each of the leaf is 
different [65–72] and certain phytochemicals such as flavonoids, phenols 
and terpenoids possess antibacterial activity [73–75] which also contribute 
to the overall antibacterial mechanism of these biosynthesized MgO 
nanoparticles. 

 

Figure 3. Comparative antibacterial activity of sample NT, NB and NP via disc diffusion method. Sample 
NT—MgO nanoparticles prepared using magnesium nitrate and A. tricolor leaf extract, Sample NB—MgO 
nanoparticles prepared using magnesium nitrate and A. blitum leaf extract, Sample NP—MgO nanoparticles 
prepared using magnesium nitrate and A. paniculata leaf extract. Experiments were conducted in triplicate 
(n = 3), and the error bars represent the standard deviation. Both sample NB and NT showed better 
antibacterial activity at 60 μL dosage, compared to sample NP. 
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Antibacterial Mechanism of MgO Nanoparticles 

The novelty of this current study is in the utilization of heat energy 
catalyzed, aqueous leaf extract for the synthesis of MgO nanoparticles in 
the antibacterial activity against E. coli. The magnesium nitrate was used 
as the precursor for the synthesis of nanoparticles which also enhances 
the synthesis process due to their lower molecular mass compared to other 
reported precursors such as magnesium acetate and magnesium nitrate 
along with sodium hydroxide [50,76]. Since it is a heat based catalyzed 
process, phytochemicals present may be degraded and lead to a difference 
in the quantity of nanoparticle produced in the different MgO samples [77] 
as in the current study.  

Antibacterial activity of metal oxide nanoparticles can be attributed to 
three major mechanisms namely disruption of cell wall via electrostatic 
attraction [78], generation of reactive oxygen species (ROS) [79] and 
disruption of cell organelles, nucleus or genetic material [80]. It can be 
noted that phytochemicals which act as a reducing and stabilizing agent 
for MgO nanoparticle also have the potential of inhibiting bacterial growth 
[81]. Based on the previous reports and current results, three possible 
antibacterial mechanisms of MgO nanoparticles have been postulated in 
this study as shown in Figure 4. Figure 4 is a conceptual representation of 
probable antibacterial mechanism of MgO nanoparticles based on 
literatures and no evidence has been provided in the present manuscript 
to support it. Mechanism 1 explains the degradation of MgO nanoparticles 
by extracellular bacterial enzymes thereby facilitating the release of ROS. 
Bacteria possess a tendency of reducing complex molecules into simple 
ions as a source of nutrients for its growth and reproduction [82]. The 
bacteria may release extracellular enzymes which reduces MgO 
nanoparticles into ions along with the phytochemicals which stabilizes the 
nanoparticles [83]. The reduced phytochemicals from nanoparticles also 
may possess certain level of antibacterial activity through ROS production 
[84]. Moreover, it is noteworthy from the literatures that most of the 
phytochemicals present in each leaf extract possess antibacterial activity. 
These phytochemicals include phenols, flavonoids, saponins, alkaloids, 
carotenoids, andrographolides, tannin and anthocyanidin, which may also 
contribute towards the antimicrobial activity of the MgO nanoparticles 
[77,85–87]. Along with phytochemicals, the oxygen ion released from MgO 
nanoparticle also leads to ROS production [88]. The magnesium ion 
released from the nanoparticle binds and enters into the bacterial cell via 
electrostatic attraction which damages bacterial cell membrane by 
reaction with sulfhydryl group [79,89]. The ROS production by oxygen ion, 
reduced phytochemicals and magnesium ion reaction with sulfhydryl 
group leads to the antibacterial activity of MgO nanoparticle according to 
mechanism 1 in Figure 4.  
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Figure 4. Proposed antibacterial mechanisms of MgO nanoparticles synthesized using heat catalyzed leaf 
extracts. Mechanism-1: Degradation of MgO nanoparticles by extracellular bacterial enzymes and facilitates 
the release of ROS; Mechanism-2: Binding of MgO nanoparticle with bacterial cell wall through electrostatic 
attraction and follows mechanism-1; and Mechanism-3: Entry of MgO nanoparticle into bacterial cells, 
reduces into ions via intracellular bacterial enzymes, causes mortality to bacterial population and follows 
ROS production similar to mechanism 1. 

On the other hand, the mechanism 2 in Figure 4 explains the binding of 
MgO nanoparticle with bacterial cell wall through electrostatic attraction 
[90] and follows the mechanism as stated in mechanism 1. The probability 
of this antibacterial mechanism for MgO nanoparticle is low as the surface 
charge of both nanoparticles as shown in Table 1 [50] and cell surface are 
negative [91]. Mechanism 3 in Figure 4 explains the entry of MgO 
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nanoparticle into bacterial cell [92], reduced into ions via intracellular 
bacterial enzymes and causes mortality to bacterial population [93] 
following ROS production similar to mechanism 1. This mechanism may 
also be possible as the pore size of bacterial cell wall ranges in between 50-
500 nm [94] while those of the MgO nanoparticles used in the current 
studies are between 30–80 nm size [77]. However, it was speculated that 
mechanism 1 may be the reason for antibacterial activity in the current 
study. This is because as the dosage increased, the antibacterial activity 
revealed that the extracellular bacterial enzymes slowly degraded the 
phytochemical stabilized MgO nanoparticles. The higher antibacterial 
activity at 60 μL dosage of sample NT, NB and 80 μL dosage of sample NP 
may be due to the effect of extracellular enzyme activity in degrading the 
nanoparticle and the phytochemicals that stabilizes the nanoparticles. 
However, the exact mechanism of leaf extract synthesized MgO 
nanoparticles is still unknown and will be explored by further studies 
against several foodborne pathogens. 2′-7′-Dichlorodihydrofluorescein 
diacetate (DCFH-DA) is a cell permeable fluorescent and chemiluminescent 
probe widely available for direct measurement of cellular redox state [95]. 
Other methods such as high performance liquid chromatography [96], 
capillary electrophoresis [97], luciferin derivative in conjunction with 
glutathione S-transferase enzyme and bimane compounds such as 
monobromobimane and monochlorobimane [98] were used to measure 
reduced glutathione and oxidized reduced glutathione levels in cells 
which indicate cellular oxidative stress via presence of reactive oxygen 
species [99]. 

CONCLUSION 

The present study reveals the antibacterial activity of MgO 
nanoparticles synthesized by using three different leaf extracts. It can be 
noted that MgO nanoparticles sample from A. blitum leaf extract shows 
higher antibacterial activity towards E. coli at 60 μL/mL dosage. The 
concentration and dosage of MgO nanoparticles present in each sample 
was identified by using linear graph obtained by different concentration 
of chemically synthesized pure MgO nanoparticles. A comparison of the 
antibacterial activity of different leaf extract synthesized MgO 
nanoparticles were also carried out. Further experimental validation of 
the antimicrobial activity of MgO nanoparticles with phytochemicals as 
functional groups may involve the comparison of chemically synthesized 
MgO nanoparticles, purified MgO nanoparticles and leaf extract as a 
control. A conceptual antimicrobial mechanism of the MgO nanoparticles 
is also discussed. The proposed mechanism is based on the findings from 
the disc diffusion method of the present work and reported literature. 
Microscopic analysis to evaluate the antibacterial mechanism of MgO 
nanoparticles, mass spectroscopic analysis of the phytochemical-MgO 
nanoparticles to evaluate the functional moieties and flowcytometry 
analysis to evaluate the ROS produced by the nanoparticles will further 
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validate the preliminary findings of this work. The current study will 
promote research into the antibacterial activity of MgO nanoparticles via 
leaf extract mediated synthesis and enable related applications as a 
potential antibacterial agent to control food borne pathogens. 
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