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ABSTRACT
Background: Congenital heart defects (CHD) are the most common 
type of birth defect, affecting approximately 8 in 1,000 newborns. 
Hundreds of genes have been reported as CHD candidate genes. 
Nevertheless, each patient/patient group may demonstrate unique 
etiologic characteristics requiring personalized treatment.

Methods: We proposed a sparse representation-based variable 
selection (SRVS) approach to select disease-related genetic markers 
from a huge disease candidate gene pool acquired from ResNet 
relation database. The proposed approach was used to evaluate 167 
CHD candidate genes and was followed by validation on a microarray 
expression data set. Pathway enrichment analysis (PEA), sub-network 
enrichment analysis (SNEA), and network connectivity analysis (NCA) 
were conducted to study the functional profile of the variables selected 
by SRVS and compare them with previous reported genetic markers.

Results: A significantly high disease prediction accuracy of 81.40 % 
was obtained (permutation p-value < 0.0002) using the top 24 SRVS-
selected genes, which had been enriched within multiple pathways and 
sub-networks that had been previously implicated with CHD. Using the 
most frequently reported genes out of the 167 CHD candidate genes, 
the highest accuracy of 69.77 % was obtained with a permutation 
p-value = 0.017. Enrichment analysis and NCA showed that the top 
genes selected by the proposed SRVS approach were strongly related 
to the frequently reported CHD genes, although functional differences 
were present.

Conclusion: Our study suggests that SRVS is an effective method 
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Genetic Biomarker Evaluation for Congenital Heart DefectsPeng Zhou  et al

MED ONE 2016,1(4);3 | Email:mo@qingres.com                                                                                                    August 25, 2016 2

in data driven variable selection for CHD and that 
frequently reported CHD candidate genes may not 
be the best biomarkers for a specific CHD patient/ 
patient group.

Key Words: Congenital heart defects; Sparse 
Representation; Variables selection; ResNet 
Database

1 INTRODUCTION
Congenital heart defects (CHD) are heart and large 
blood vessel anatomical abnormalities occurring 
during embryonic development [1]. CHD can result 
from genetic factors, or environmental factors; 
however, a combination of both is typical [2, 3]. 
Recently, there have been an increased number of 
articles reporting hundreds of genes/proteins related 
to CHD, many of which were suggested as candidate 
genes for the disease However, every patient/patient 
group has unique human genome variations that 
requires treatment based on their predicted response 
or risk of disease [4].

Sparse representation has recently received 
significant attention in applications such as signal 
recovery and significant components identification [5, 

6]. However, in the cases of large variable and small 
sample number applications, specific modulation is 
required to fulfil the variable selected task. In many 
biomedical problems (e.g., genomic data, image 
data) samples are far outnumbered by variables.

This study proposes a sparse representation-
based variable selection (SRVS) algorithm for 
selecting significant biomarkers at different detection 
resolutions, which has previously been effective 
in selecting variables from SNP data and fMARI 
data [7]. Instead of selecting a specific of number of 
variables, this data-driven method ranks all variables 
by generating a sparse regression weight for each of 
them [7].

2 MATERIALS AND METHODS
In this section, the proposed SRVS algorithm 
(Section 2.1) is described and then applied to a 
CHD candidate genetic biomarker selection problem 
(Section 2.2). Finally SRVS-selected variables are 
studied in terms of pathway enrichment analysis 
(PEA), sub-network enrichment analysis (SNEA), 
and network connectivity analysis (NCA) (Section 
2.3).

2.1 SRVS algorithm
In general, a sparse representation model can be 
presented as Eq. (1).

   y = x δ + ε (1)

where y ∈ R n × 1 is the observation vector; x ∈ R n × 

p are the data measurements and p ≥ n . ε ∈ R n × 1 is 
the noise-caused measurement error. The goal is to 
reconstruct the unknown vector δ ∈ R p × 1 based on 
y and x.

To best approximate y by choosing a small 
number of non-zeros entries of δ for the model given 
by Eq. (1), we consider the following Lp minimization 
problem (P0):

    (P0) min|| δ || p  subject to || y-xδ ||2  ≤ ε (2)

where ||*|| p is the Lp norm, and p ∈ [0, 1]. The 
fol lowing algorithm is designed to solve the 
minimization problem (P0) given by Eq. (2) and 
detect the columns of x relevant to y.

SRVS Algorithm:
1. Initial δ (0) = 0;

2. For the Step ι, randomly choose k columns from 
x = {x1, ..., xp} to construct a n ⅹ k sub-matrix 
denoted as xι ∈ R n × k ; and mark the selected 
columns' indexes as Iι ∈ R 1 × k ;

3. Solve the following Lp minimization problem to 
find the optimal sparse solution δι ∈ R k × 1 :

       min|| δι ||p  s.t. || y - xι δι ||2  ≤ ε                       (3)

4. Update δ (ι)  with δι : δ(ι) (Iι) = δ (ι-1) (Iι) + δι ; where 
δ (ι) (Iι)  and δ (ι-1) (Iι) denote the Iι th entries in δ (ι)  

and δ (ι-1) respectively;

5. If || δ (ι)/ι - δ(ι-1)/(ι-1) ||2 > a, where is a predefined 
constant, update ι = ι+1, and go to Step 2. 
Otherwise, set δ = δ(ι) / ι . The non-zero entries in 
δ correspond to the column vectors selected.

In Step 3, there are many proposed methods 
for solving the Lp minimization problem, such as the 
Homotopy method [8] for p = 1, and the orthogonal 
matching pursuit (OMP) algorithm [9]  for p = 0.
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2.2 CHD Candidate Genes for Evaluation
A 167-CHD-candidate gene pool was acquired from 
the CHD-Gene relation data, which was also included 
in a gene expression data set (GEO: GSE34457). 
CHD-Gene relation data was acquired from Pathway 
Studio (PS) ResNet 11 Mammalian database 
updated July 2016. The ResNet® Mammalian 
database is one part of PS ResNet Databases, which 
are a group of real-time update network databases, 
including curated signaling, cellular process, and 
metabolic pathways, ontologies, and annotations, 
as well as molecular interactions and functional 
relationships extracted from 35M+ references 
covering the entire PubMed abstract and Elsevier 
full text journals. More information about the PS 
ResNet Mammalian databases is available at http:// 
pathwaystudio.gousinfo.com/ResNetDatabase.html.

The gene expression profi le was acquired from 
the cell lines of 43 Down syndrome patients, among 
whom 21 were with CHD (case) and 22 without 
(controls). The original data includes 48,701 probes. 
All probes with null data entries were removed, 
resulting in an overlap of 167 genes with the CHD 
candidate gene pool.

2.3 Validation of the SRVS method
To test the validity of the proposed method, we 
studied the SRVS selected genes through four 
approaches: CHD predication, PEA, SNEA and 
NCA. For comparison purposes, we also compared 
the performance of the top frequently referenced 
CHD candidate genes.

2.3.1 Defi nition of two scores
The reference number underlying a gene-disease 
relationship is defi ned as the gene’s reference score 
(Rscore). The SRVS approach generated weights for 
each gene is defi ned as the SRVS score (Sscore).

2.3.2 Validation using disease prediction
We hypothesize that significant CHD candidate 
genes/gene set should contribute to distinguishing 
CHD patients from healthy controls. A Euclidean, 
distance-based, multivariate classification [7] of 
the gene expression data set (GEO: GSE34457), 
followed by a leave-one-out (LOO) cross-validation, 
using the overall gene set and the sub-sets selected 
by Sscore and Rscore as tentative markers, was 
performed to validate selected gene effectiveness 
and the proposed SRVS approach. Next a 5,000 run 
permutation was conducted to test the hypothesis 
that a randomly-selected gene set of the same size 
can reach an equal, or higher, classifi cation accuracy 
(CR).

2.3.3 Enrichment and connectivity analysis
To better understand the underlying functional profi le 
of the genes selected by Sscore and Rscore, we 
also conducted a PEA and an SNEA on the top 
genes selected by the two scores. An NCA was 
also conducted on the gene subsets using Pathway 
Studio, to identify connectivity between given genes/
proteins. The weight of an edge is the number of 
scientific references underlying a reported gene-
gene interaction.

3 RESULTS

3.1 CHD candidate genes for validation
An analysis of CHD-Gene relation data revealed a 
CHD gene pool of 684 genes, supported by 3,237 
articles (Supplementary Table S1). Of these 684 
CHD candidate genes, 167 were evaluated using the 
proposed SRVS algorithm with an independent gene 
expression data (GEO: GSE34457). Fig. 1 presents 
the CHD candidate genes. The complete 167 gene 
list and related information, including Sscore and 
Rscore, is in Supplementary Table S2.

Fig. 1 The 167 CHD Candidate Genes Analyzed
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3.2 Validation in CHD prediction
The effectiveness of the SRVS-generated metrics, 
the Sscore, was evaluated using a case/control 
classification and a LOO cross-validation on an 
RNA microarray dataset (GEO: GSE34457). This 
was followed by a 5,000 run permutation test. 
The Rscore was tested for comparison purposes. 

In the LOO cross validation, the 167 genes were 
ranked by different metric scores, and then the top 
n (n = 1, 2, …) genes were used as input variables 
for classification and LOO cross-validation. Fig. 2 
presents the results with maximum classification 
ratios (CRs) marked at the position of corresponding 
number of genes.

Table 1. LOO cross validation and permutation 
results

Sscore Rscore 167 Genes

MaxCRs 81.40 69.77 58.14

#Genes 24 14 167

pvalue < 0.0002 0.017 0.30

Fig. 2 suggests that the top genes using both 
the Sscore and the Rscore leads to significant 
better classification accuracies as compared to CRs 
generated by randomly selected gene sets of same 
size. Moreover, the highest CRs were acquired 
by using only the top genes selected by different 
scores, (See Fig. 2 and Table 1). Adding more genes 
with lower scores do not help to get a better CR, 
suggesting the validity of both Sscore and Rscore. 

To note, the Sscore led to much higher CRs 

with lower permutation p-values, demonstrating 
the proposed method’s effectiveness. The top 24 
Sscore are in Table 2. The top 24 Rscore genes are 
provided for comparison purposes. The full lists are 
in Supplementary Table S2.

Table 2. Top 24 Genes Reported Associations 
with CHD Ranked by Different Scores

Genes by 
SScore

MEGF8; GSK3B; MED12; WASL; 
NCOR 2; SIRT7; PNPLA2; CEP290; 
MKL1; GPC6; PLCG1; MEF2D; ORAI1; 
KCTD10; DVL2; SENP2; DGCR8; 
ALG13; RPS19; BCOR; RERE; MFN2; 
G6PC3; LETM1

Genes by 
Rscore

PTPN11; NOTCH1; LMNA; G6PC3; 
MTRR; RXRA; SRF; BMPR2; HDAC2; 
SLC19A1; AKT1; KRAS; CTNNB1; 
DICER1; RAF1; FLNA; RPL5; MEF2C; 
BCOR; JARID2; SMARCA4; NEK8; 
IGF2R; SMAD4

Fig. 2 Comparison of Different Metrics via LOO Cross Validation (genes ranked in ascending order) 
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3.3 Compare Top Genes by Sscore and 
Rscore
To better understand the profile of the genes 
selected by SRVS approach, the two groups of top 
genes selected by Sscore and Rscore (Table 2) were 
compared using PEA and NCA approaches. A two-
gene overlap: BCOR and G6PC3 (Fig. 3 (a)) was 

identifi ed.

Nevertheless, a strong relation between the two 
gene groups is suggested by an NCA analysis, which 
detected 94 relations between 18/24 Sscore genes 
and 18/24 Rscore genes (Fig. 3 (b)), supported by 
more than 3,000 references (Supplementary Table 
S3).

Fig. 3 Overlap and association between the sub gene sets with the highest Sscore and Rscore. (a) Venn 
diagram of the top 24 genes by both scores; (b) Gene-Gene connection between top 24 genes by both scores; 
Rscore genes in yellow; Sscore genes in blue.

3.4 Enrichment Analysis
PEA and SNEA results for the different groups 
listed in Table 3 are presented in this section. At 
the same enrichment p-value threshold (< 0.001), 
152 pathways are enriched by the top 24 Rscoree 

genes, while only 17 enriched pathways for the 
Sscore group were identifi ed. The top 10 pathways/
gene sets, by different scores, appear in Table 3. 
Complete results are in Supplementary Table S4a 
and S4b.

Table 3. Pathways/groups enriched by 24 genes with the highest Sscore and Rscore

Pathway/gene set Name   GO ID p-value

The fi rst 10 
pathways/
gene sets 
enriched by 
top 24 genes 
with highest 
Sscore

TCTN-B9D complex   0036038 8.93E-05

Wnt signaling pathway, planar cell 
polarity pathway   0060071 9.70E-05

Heart development   0007511 1.43E-04

Canonical Wnt signaling pathway   0060070 1.59 E-04

Histone deacetylase binding   0042826 2.92 E-04

TC 2.A.97.1   Pathway Studio Ontology 4.27 E-04
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Positive regulation of transcription, 
DNA-templated   0045941 6.03E-04

Histone deacetylase complex   0000118 6.33E-04

Establishment or maintenance of cell 
polarity   0007163 6.88E-04

Phospholipase C gamma   Pathway Studio Ontology 8.54 E-04

The first 10 
pathways/
gene sets 
enriched by 
top 24 genes 
with highest 
Rscore

Heart development   0007511 3.01E-12

Positive regulation of transcription from 
RNA polymerase II promoter   0010552 5.84E-09

Regulation of myelination   0031641 6.29E-09

Liver development   0001889 6.77E-09

polymerase II promoter   0000122 7.31E-09

transition   0010718 3.53E-08

Embryonic hindlimb morphogenesis   0035116 6.73E-08

Transcription factor binding   0008134 1.07E-07

Chromatin binding   0003682 1.2E-07

Protein complex   0043234 1.36E-07

Table 3 shows that top Sscores genes and 
those with the top Rscores genese were enriched 
in different groups of pathways (only one overlap: 
GOID 0007511), with different p-values (Sscore 
group: 8.54 E-04 - 8.93 E-05; Rscore group: 1.36E-07 
- 3.01E-12), indicating that the top genes selected 
by SRVS were functionally different from the most 
frequently reported ones.

The 17 pathways/gene sets enriched with the 24 
Sscore genes (p-value < 0.00091, with 16/24 unique 
genes; Supplementary Table 4a), held 1 gene set 
related to heart development (GO: 0007511; p-value 
= 0.00014, overlap: 4). These sets also held 2 gene 
sets related to transcription factors for positive DNA-
templated transcription regulation (GO: 0045941; 
p-value = 0.0006, overlap: 5) and positive regulation 
of transcription on the RNA polymerase II promoter 

(GO: 0010552; p-value = 0.00091, overlap: 6). Both 
have been previously implicated with CHD (Clark et 
al. 2016).

In addition to PEA, a SNEA using Pathway 
Studio for identifying a selected gene’s pathogenic 
significance to other disorders, possibly related 
to CHD, was performed. Full results appear in 
Supplementary Table S5a and S5b. Table4 shows 
the top 10 disease-related sub-networks enriched by 
the two gene groups.

Table 4 indicates that both groups enriched 
some other heart defect related sub-networks, as 
well as other congenital and genetic mutation related 
sub-networks. Two sub-networks were observed for 
both groups: congenital malformation and leukemia.



Genetic Biomarker Evaluation for Congenital Heart DefectsPeng Zhou   et al

MED ONE 2016,1(4);3 | Email:mo@qingres.com                                                                                                    August 25, 2016 7

3.5 Connectivity Analysis
In addit ion to PEA and SNEA, an NCA was 
performed on the top 24 genes having the highest 
Rscores and Sscores (Table 2) to generate functional 
networks. In the Sscore group, 11 of the 24 genes 
presented 14 direct connections supported with 53 

Table 4. SNEA Results by 63 Genes with the Highest NScore and Rscore

Gene Set Seed Overlap p-value Jaccard 
similarity

The first 10 
pathways/gene 
sets Enriched      
by top 63 genes 
with highest 
Sscore

congenital malformation 13 3.59E-10 0.008238

cardiac hypertrophy 7 5.17E-07 0.012844

Obesity 10 7.57E-06 0.005033

Dystrophy 4 2.22E-05 0.020833

cognitive impairment 5 4.99E-05 0.011236

Leukemia 7 6.38E-05 0.006256

craniorachischisis 2 8.28E-05 0.055556

malignant transformation 5 0.00011 0.00956

DiGeorge syndrome 3 0.000111 0.025641

adenovirus infection 4 0.000126 0.013841

The first 10 
pathways/gene 
sets Enriched      
by top 150 genes 
with highest 
Rscore

congenital malformation 22 1.09989E-24 0.01402167

leukemia 16 1.28978E-16 0.014414414

colon cancer 17 1.30808E-16 0.012203877

aneuploidy 11 8.3047E-16 0.037288136

dysplasia 13 1.13206E-15 0.022146508

gastric cancer 17 1.66302E-14 0.009129968

adenoma 13 2.59156E-14 0.017426273

genetic disorder 16 4.65089E-14 0.009919405

diabetes mellitus 18 4.84479E-14 0.007475083

T-cell acute lymphoblastic 
leukemia 10 9.46603E-14 0.032258065

references. The Rscore group had more than 113 
relations among 19/24 genes, with 1,283 literature 
supports (Fig. 4 (b)). This observation is consistent 
with the PEA and SNEA. It suggests that the highest 
Sscores genes were less functionally related to each 
other than the Rscore group genes were.
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4 DISCUSSION AND CONCLUSION
Identification of significant biomarkers based on 
a small number of observations is a fundamental 
problem in signal processing. This study proposed 
a sparse representation based genetic marker 
selection approach, and applied it to evaluate 167 
CHD candidate genes. The genes were identified 
from a CHD-Gene network relation data set acquired 
from the ResNet database. This set overlapped with 
a RNA gene expression data set (GEO: GSE34457). 
Two metric scores were generated and compared: 
the Sscore from SRVS analysis, and the Rscore 
from the CHD-Gene relation data set analysis.

LOO cross validation demonstrated that if 
whole 167 CHD candidate genes were used, a 
classifi cation ratio of only 58.14 % was obtained with 
a permutation p-value of 0.30 (Table 1). Using both 
Sscore, and Rscore, top genes resulted in greater 
CRs (81.40 % and 69.77 %) with a more signifi cant 
permutation p-value (< 0.017). This suggests a need 
for variable selection for the candidate CHD genes 
tested, as well as the efficacy of both Sscore and 
Rscore.

The top 24 Sscore genes led to the greatest CR 
with the lowest permutation p-value, demonstrating 
the effectiveness of the proposed SRVS method 
in CHD variable selection. The top 24 Rscore-
selected genes and the 24 genes selected by SRVS 
were compared to provide a clearer understanding. 
Analysis showed that these two groups share only 
two genes: BCOR and G6PC3 (Fig. 3 (a)). Enriched 
pathways (Table 4), associated sub -networks (Table 
5), and gene-gene interactions (Fig. 4) revealed 
other differences. The results highlight that even 
though well-studied CHD candidate genes were 

Fig. 4 Connectivity networks built by 24 genes from different groups. Networks were generated using 
Pathway Studio. (a) Sscore group; (b) Rscore group.

significant to the disease and were also effective 
in disease prediction (LOO permutation p-value = 
0.017), they were not the best genetic markers for 
the subjects involved with the expression data tested 
(GEO: GSE34457).

Despite differences between the top genes 
selected by Sscore and Rscore, many of Sscore 
en r i chment  pa thways  p rev ious ly  repor ted 
to associate wi th CHD were ident i f ied.  For 
example, heart development, positive regulation 
of transcript ion from the RNA polymerase II 
promoter, the DNA-templated positive regulation of 
transcription, the canonical Wnt signaling pathway, 
and histone deacetylase binding [11-13]. Furthermore, 
these genes were also identified to be the genetic 
basis of other CHD related diseases, such as 
congenital malformation, cardiac hypertrophy, 
dystrophy, and cancer [14, 15]. These results support 
the biological validity of the top genes selected by 
the SRVS approach.

There is direct literature support for associating 
CHD and the top 24 genes selected by Sscore 
(Supplementary Table S1). A strong functional 
association between the top genes selected by the 
Sscore and Rscore groups (Fig. 3 (b)) is supported 
by over 3,000 references (Supplementary Table S3). 
Genes with a high Rscore suggests strong support in 
the literature for linking it to CHD. Our observations 
provide indirect support for the proposition that the 
majority of the top genes selected by the SRVS 
method are functionally signifi cant in CHD.

This study does have several limitations calling 
for future work. Although the algorithm was tested 
on 167 CHD candidate genes, there are other genes 
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linked to CHD that were not included in the data set 
and were, therefore, not analyzed. More inclusive 
data sets including all CHD genes should be used to 
test this method’s accuracy. The method should also 
be tested on other diseases to determine its validity.

We conclude that CHD is a complex disease 
with genetic causes linked to a network composed of 
a large gene group. Each patient/patient group may 
present with unique genomic variations requiring 
treatment based on their particular disease risk 
prediction, where the proposed SRVS method can 
be employed effectively.

DECLARATION OF INTERESTS
The authors declare no conflict of interests.

REFERENCES
1. Hoffman JI ,  Kaplan S. The incidence of 

congenital heart disease. J Am Coll Cardiol. 
2002; 39(12): 1890-1900.

2. Sifrim A, Hitz MP, Wilsdon A, Breckpot J, Turki 
SH1, Thienpont B, McRae J, Fitzgerald TW, 
Singh T, Swaminathan GJ, Prigmore E, Rajan D, 
Abdul-Khaliq H, Banka S, Bauer UM, Bentham 
J, Berger F, Bhattacharya S, Bu'Lock F, Canham 
N, Colgiu IG, Cosgrove C, Cox H, Daehnert I, 
Daly A, Danesh J, Fryer A, Gewillig M, Hobson 
E, Hoff K, Homfray T; INTERVAL Study., 
Kahlert AK, Ketley A, Kramer HH, Lachlan K, 
Lampe AK, Louw JJ, Manickara AK, Manase D, 
McCarthy KP, Metcalfe K, Moore C, Newbury-
Ecob R, Omer SO, Ouwehand WH, Park SM, 
Parker MJ, Pickardt T, Pollard MO, Robert L, 
Roberts DJ, Sambrook J, Setchfield K, Stiller B, 
Thornborough C, Toka O, Watkins H, Williams 
D, Wright M, Mital S, Daubeney PE, Keavney B, 
Goodship J; UK10K Consortium., Abu-Sulaiman 
RM, Klaassen S, Wright CF, Firth HV, Barrett 
JC, Devriendt K, FitzPatrick DR, Brook JD, 
Deciphering Developmental Disorders Study, 
Hurles ME. Distinct genetic architectures for 
syndromic and nonsyndromic congenital heart 
defects identified by exome sequencing. Nat 
Genet. 2016; 48(9): 1060-1065.

3. Srivastava D. Making or breaking the heart: 
From lineage determination to morphogenesis. 
Cell. 2006; 126(6): 1037-1048.

4. Lu Y, Goldstein DB, Angrist M, Cavalleri G. 
Personalized medicine and human genetic 
diversity. Cold Spring Harb Perspect Med. 2014; 
4(9): a008581.

5. Donoho DL, Elad M, Temlyakov VN. Stable 
recovery of sparse overcomplete representations 
in the presence of noise. IEEE Trans Inform 
Theory. 2006; 52(1): 6-18.

6. Cao H, Deng H, Li M, Wang Y. Classification 
of multicolor fluorescence in situ hybridization 
(M-FISH) images with sparse representation. 
IEEE Trans Nanobiosci. 2012; 11(2): 111-118.

7. Cao H, Duan J, Lin D, Shugart YY, Calhoun V, 
Wang Y. Sparse representation based biomarker 
selection for schizophrenia with integrated 
analysis of fMRI and SNPs. Neuroimage. 2014; 
102(1): 220-228.

8. Donoho DL, Tsaig Y. Fast solution of L1-norm 
minimization problems when the solution may be 
sparse. IEEE Transs on Informat Theory. 2008; 
54(11): 4789-4812.

9. Davis G, Mallat S, Avellaneda M. Greedy 
adaptive approximation. J Constr Approx. 1997; 
13(1): 57-98.

10. Sivachenko AY, Yuryev A, Daraselia N, MazoI. 
Molecular networks in microarray analysis. J 
Bioinform Comput Biol. 2007; 5(2B): 429-456.

11. Clark KL, Yutzey KE, Benson DW. Transcription 
factors and congenital heart defects. Annu Rev 
Physiol. 2006; 68(1): 97-121.

12. Zhang R, Gui Y, Wang X. Role of the canonical 
Wn t  s i gna l i ng  pa thway  i n  hea r t  va l ve 
development. Chin J Contemp Pediat. 2015; 
17(7): 757-762.

13. Walfridsson J, Bjerling P, Thalen M, Yoo EJ, Park 
SD, Ekwall K. The CHD remodeling factor Hrp1 
stimulates CENP-A loading to centromeres. 
Nucleic Acids Res. 2005; 33(9): 2868-2879.

14. Prokofyeva E, Wilke R, Lotz G, Troger E, 
Strasser T, Zrenner E. Distribution and clinical 
peculiarities of monogenic retinal dystrophies 
at the Center for Ophthalmology, University of 
Tuebingen. Acta Ophthalmologica. 2008; 86 
(s243): doi:10.1111/j.1755-3768.2008.6356.x.

15. Lee Y, Chen Y, Jeng M, Tsao P, Yen H, Lee P, Li 
S, Liu C, Chen T, Chou P, Soong WJ. The risk of 
cancer in patients with congenital heart disease: 
a nationwide population-based cohort study in 
Taiwan. PloS One. 2015; 10(2): e0116844.


